Guaranteed Velocity Error Control for the Pseudostress Approximation of the Stokes Equations

نویسندگان

  • P. Bringmann
  • C. Carstensen
  • C. Merdon
چکیده

The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming velocity-oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1411–1432, 2016

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guaranteed Error Control for the Pseudostress Approximation of the Stokes Equations

Abstract. The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in Hpdivq and the velocity in L. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas discretization wh...

متن کامل

A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem

The pseudostress-velocity formulation of the stationary Stokes problem allows a Raviart-Thomas mixed finite element formulation with quasi-optimal convergence and some superconvergent reconstruction of the velocity. This local postprocessing gives rise to some averaging a posteriori error estimator with explicit constants for reliable error control. Standard residual-based explicit a posteriori...

متن کامل

Mixed Finite Element Methods for Incompressible Flow: Stationary Navier-Stokes Equations

In [Z. Cai, C. Tong, P. S. Vassilevski, and C. Wang, Numer. Methods Partial Differential Equations, to appear], the authors developed and analyzed a mixed finite element method for the stationary Stokes equations based on the pseudostress-velocity formulation. The pseudostress and the velocity are approximated by a stable pair of finite elements: Raviart–Thomas elements of index k ≥ 0 and disco...

متن کامل

Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation

In this paper, we develop and analyze mixed finite element methods for the Stokes and Navier-Stokes equations. Our mixed method is based on the pseudostress-pressure-velocity formulation. The pseudostress is approximated by the Raviart-Thomas, Brezzi-Douglas-Marini, or Brezzi-DouglasFortin-Marini elements, the pressure and the velocity by piecewise discontinuous polynomials of appropriate degre...

متن کامل

Pseudostress-Based Mixed Finite Element Methods for the Stokes Problem in R with Dirichlet Boundary Conditions. I: A Priori Error Analysis

We consider a non-standard mixed method for the Stokes problem in Rn, n∈ {2,3}, with Dirichlet boundary conditions, in which, after using the incompressibility condition to eliminate the pressure, the pseudostress tensor σ and the velocity vector u become the only unknowns. Then, we apply the Babuška-Brezzi theory to prove the well-posedness of the corresponding continuous and discrete formulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016